Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
Microbiol Res ; 282: 127661, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432016

RESUMO

In yeasts, ferric reductase catalyzes reduction of ferric ion to ferrous form, which is essential for the reductive iron assimilation system. However, the physiological roles of ferric reductases remain largely unknown in the filamentous fungi. In this study, genome-wide annotation revealed thirteen ferric reductase-like (Fre) proteins in the filamentous insect pathogenic fungus Beauveria bassiana, and all their functions were genetically characterized. Ferric reductase family proteins exhibit different sub-cellular distributions (e.g., cell periphery and vacuole), which was due to divergent domain architectures. Fre proteins had a synergistic effect on fungal virulence, which was ascribed to their distinct functions in different physiologies. Ten Fre proteins were not involved in reduction of ferric ion in submerged mycelia, but most proteins contributed to blastospore development. Only two Fre proteins significantly contributed to B. bassiana vegetative growth under the chemical-induced iron starvation, but most Fre proteins were involved in resistance to osmotic and oxidative stresses. Notably, a bZIP-type transcription factor HapX bound to the promoter regions of all FRE genes in B. bassiana, and displayed varying roles in the transcription activation of these genes. This study reveals the important role of BbFre family proteins in development, stress response, and insect pathogenicity, as well as their distinctive role in the absorption of ferric iron from the environment.


Assuntos
Beauveria , FMN Redutase , Animais , Virulência/genética , Beauveria/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Esporos Fúngicos , Insetos , Ferro/metabolismo
2.
J Invertebr Pathol ; 203: 108076, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382734

RESUMO

Beauveria bassiana is one of the most extensively studied entomopathogenic fungi (EPF) and is widely used as a biocontrol agent against various insect pests. Proteins containing the MARVEL domain are conserved in eukaryotes, typically with four transmembrane structures. In this study, we identified the five MARVEL domain proteins in B. bassiana. Five MARVEL domain proteins were localized to cytomembrane and vacuoles in B. bassiana, but had different roles in maintaining the lipid-droplet homeostasis. These proteins were required for fungal virulence, but differentially contributed to fungal utilization of nutrients, stress tolerance, and development under aerial and submerged conditions. Notably, BbMARVEL2 was essential for conidial surface morphology. Additionally, these five MARVEL domain proteins contributed to fungal interaction with the host immune defense. This study provides new mechanistic insights into the life cycle of B. bassiana as a biocontrol agent.


Assuntos
Beauveria , Animais , Virulência , Proteínas Fúngicas/metabolismo , Insetos/microbiologia , Proteínas com Domínio MARVEL/metabolismo , Esporos Fúngicos
3.
Microbiol Res ; 281: 127622, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38246123

RESUMO

The E2 ubiquitin conjugator Rad6 is required for DNA damage bypass in budding yeast but remain functionally unknown in filamentous fungi. Here, we report pleiotropic effect of Rad6 ortholog in Beauveria bassiana, a wide-spectrum fungal insecticide. Global ubiquitination signal was greatly attenuated in the absence of rad6. The blocked ubiquitination led to severe growth defect, blocked asexual development, and abolished infectivity/insect pathogenicity, which correlated with compromised conidial quality (including viability, hydrophobicity, adherence to insect cuticle, and thermotolerance) and blocked secretion of cuticle-degrading enzymes including Pr1 family proteases. Importantly, Rad6 played much greater role in photoreactivation of UVB-impaired conidia by a 3- or 5-h light plus 9- or 7-h dark incubation than in dark reactivation of those impaired conidia by a 12-h dark incubation. The high activity of Rad6 in photoreactivation in vivo was derived from its link to a protein complex cored by the photolyase regulators WC1 and WC2 via the strong interactions of Rad6 with the E3 partner Rad18 and Rad18 with WC2 revealed in yeast two-hybrid assays. Transcriptomic analysis resulted in identification of 2700 differentially regulated genes involved in various function categories and metabolism pathways, indicating a regulatory role of Rad6-mediated ubiquitination in gene expression networks and genomic stability. Conclusively, Rad6 is required for asexual and insect-pathogenic lifecycles, solar UV damage repair, and genomic expression of B. bassiana. The primary dependence of its strong anti-UV role on photoreactivation in vivo unveils a scenario distinct from the core role of its yeast ortholog in DNA damage bypass.


Assuntos
Beauveria , Animais , Beauveria/genética , Ubiquitina/genética , Saccharomyces cerevisiae/genética , Insetos , Genômica , Esporos Fúngicos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
4.
Pest Manag Sci ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285453

RESUMO

BACKGROUND: Alternatives to neonicotinoids against cereal aphids are needed to mitigate aphid resistance and non-target effects. The emulsifiable oil formulations of two Beauveria bassiana strains, namely Bb registered as a mycoinsecticide and TBb overexpressing an endogenous virulence factor, were tested for seasonal control of cereal aphids at the elongating (April 7) to milk ripening (May 12) stages of winter wheat crop in Yuhang, Zhejiang. Each of three field trials consisted of blank control and the treatments (three randomized 100-m2 plots per capita) of each fungal strain sprayed biweekly at rates of 1.0 × 1013 and 1.5 × 1013 conidia ha-1 and 10% imidacloprid WP sprayed biweekly at a label rate. RESULTS: Tiller infestation percentage and aphid density in the 5-week field trials after the first spray were reduced to 18.7-22.4% and 9.1-12.4 aphids per tiller in the fungal treatments, and 12.8-25.3% and 2.8-20.9 aphids per tiller in the chemical treatment, contrasting with 49.2-60.3% and 37.1-108.5 aphids per tiller in the control. Percent control efficacies (±SD) computed with weekly aphid densities over the period averaged 84.0 ± 1.6 and 85.3 ± 1.8 versus 78.0 ± 4.0 and 79.9 ± 3.2 in the high-rate versus low-rate treatments of Bb and TBb, respectively, and 84.5 ± 7.8 in the chemical treatment. Imidacloprid showed faster kill action but more variable efficacy than the fungal treatments throughout the trials. CONCLUSION: Either Bb or TBb formulation competes with imidacloprid in reducing percent infestation and aphid density. The overall efficacy was significantly higher in the treatments of TBb than of Bb. © 2024 Society of Chemical Industry.

5.
J Photochem Photobiol B ; 251: 112849, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38277960

RESUMO

Anti-ultraviolet (UV) roles of Rad2 and Rad14 depend on nucleotide excision repair (NER) of UV-induced DNA lesions in budding yeast but remain unexplored yet in filamentous fungi. Here, nucleus-specific Rad2 and Rad14 orthologs are shown to recover Beauveria bassiana, a main source of wide-spectrum mycoinsecticides, from solar UV damage through photorepair-depending photoreactivation. As a photorepair index, photoreactivation (germination) rates of lethal UVB dose-irradiated conidia via a 3- or 5-h light plus 9- or 7-h dark incubation at 25 °C were drastically reduced in the Δrad2 and Δrad14 mutants versus a wild-type strain. As an NER index, nighttime-mimicking 12-h dark reactivation rates of low UVB dose-impaired conidia decreased sharply compared to the corresponding photoreactivation rates in the presence or absence of either ortholog, indicating that its extant NER activity was limited to recovering light UVB damage in the field. The high photoreactivation activity of either Rad2 or Rad14 was derived from its tight link to a large protein complex formed by photolyase regulators and other anti-UV proteins through multiple protein-protein interactions revealed by yeast two-hybrid assays. Therefore, Rad2 and Rad14 recover B. bassiana from solar UV damage through photoreactiovation in vivo that depends primarily on photorepair, although they contribute little to the fungal lifecycle-related phenotypes. These findings unveil a novel scenario distinguished from the NER-depending anti-UV roles of Rad2 and Rad14 in the model yeast and broaden a biological basis crucial for rational application of fungal insecticides to improve pest control efficacy via feasible recovery of solar UV damage.


Assuntos
Beauveria , Inseticidas , Reparo do DNA , Beauveria/genética , Raios Ultravioleta , Luz Solar , Saccharomyces cerevisiae/metabolismo
6.
Microbiol Res ; 280: 127589, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38154444

RESUMO

Rad2, Rad14 and Rad26 recover ultraviolet (UV) damage by nucleotide excision repair (NER) in budding yeast but their functions in filamentous fungi have not been elucidated. Here, we report mechanistically different anti-UV effects of nucleus-specific Rad2, Rad14 and Rad26 orthologs in Metarhizium robertsii, an insect-pathogenic fungus. The null mutants of rad2, rad14 and rad26 showed a decrease of ∼90% in conidial resistance to UVB irradiation. When conidia were impaired at a UVB dose of 0.15 J/cm2, they were photoreactivated (germinated) by only 6-13% through a 5-h light plus 19-h dark incubation, whereas 100%, 80% and 70% of the wild-type conidia were photoreactivated at 0.15, 0.3 and 0.4 J/cm2, respectively. The dose-dependent photoreactivation rates were far greater than the corresponding 24-h dark reactivation rates and were largely enhanced by the overexpression (OE) of rad2, rad14 or rad26 in the wild-type strain. The OE strains exhibited markedly greater activities in photoreactivation of conidia inactivated at 0.5-0.7 J/cm2 than did the wild-type strain. Confirmed interactions of Rad2, Rad14 and Rad26 with photolyase regulators and/or Rad1 or Rad10 suggest that each of these proteins could have evolved into a component of the photolyase regulator-cored protein complex to mediate photoreactivation. The interactions inhibited in the null mutants resulted in transcriptional abolishment or repression of those factors involved in the complex. In conclusion, the anti-UV effects of Rad2, Rad14 and Rad26 depend primarily on DNA photorepair-dependent photoreactivation in M. robertsii and mechanistically differ from those of yeast orthologs depending on NER.


Assuntos
Desoxirribodipirimidina Fotoliase , Metarhizium , Reparo do DNA , Desoxirribodipirimidina Fotoliase/genética , Desoxirribodipirimidina Fotoliase/metabolismo , Saccharomyces cerevisiae/genética , Dano ao DNA , Metarhizium/genética , Metarhizium/metabolismo , Raios Ultravioleta
7.
Curr Genet ; 69(4-6): 267-276, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37910177

RESUMO

Peroxisomes play important roles in fungal physiological processes. The RING-finger complex consists of peroxins Pex2, Pex10, and Pex12 and is essential for recycling of receptors responsible for peroxisomal targeting of matrix proteins. In this study, these three peroxins were functionally characterized in the entomopathogenic fungus Beauveria bassiana (Bb). These three peroxins are associated with peroxisomes, in which BbPex2 interacted with BbPex10 and BbPex12. Ablation of these peroxins did not completely block the peroxisome biogenesis, but abolish peroxisomal targeting of matrix proteins via both PTS1 and PTS2 pathways. Three disruptants displayed different phenotypic defects in growth on nutrients and under stress conditions, but have similar defects in acetyl-CoA biosynthesis, development, and virulence. Strikingly, BbPex10 played a less important role in fungal growth on tested nutrients than other two peroxins; whereas, BbPex2 performed a less important contribution to fungal growth under stresses. This investigation reinforces the peroxisomal roles in the lifecycle of entomopathogenic fungi and highlights the unequal functions of different peroxins in peroxisomal biology.


Assuntos
Beauveria , Proteínas de Membrana , Animais , Peroxinas , Proteínas de Membrana/metabolismo , Beauveria/genética , Beauveria/metabolismo , Insetos , Estágios do Ciclo de Vida , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
8.
J Invertebr Pathol ; 201: 108006, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37844657

RESUMO

Class I/II hydrophobins constitute a family of small amphiphilic proteins that mediate cell hydrophobicity and adhesion to host or substrata and have pleiotropic effects in filamentous fungi. Here we report that only class I Hyd1 is essential for conidial hydrophobicity and insect pathogenicity among three hydrophobins (Hyd1-3) characterized in Metarhizium robertsii, an insect-pathogenic fungus. Aerial conidiation levels of three Δhyd1 mutants were much more reduced in 5-day-old cultures than in 7-day-old cultures, which were wettable (hydrophilic), but restored to a wild-type level in 15-day-old cultures. The Δhyd1 mutants were compromised in conidial quality, including significant decreases in hydrophobicity (58%), adhesion to insect cuticle (36%), insect pathogenicity via normal cuticle infection (37%), UVB resistance (20%), and heat tolerance (10%). In contrast, none of all examined phenotypes were affected in the null mutants of hyd2 and hyd3. Intriguingly, micromorphology and integrity of hydrophobin rodlet bundles on conidial coat were not affected in all mutant and wild-type strains, but the rodlet bundles were disordered in the absence of hyd1, suggesting a link of the disorder to the decreased hydrophobicity. Therefore, Hyd1 mediates the fungal hydrophobicity and plays an important role in conidial quality control and insect-pathogenic lifecycle. Class I Hyd2 and class II Hyd3 seem functionally redundant in M. robertsii.


Assuntos
Proteínas Fúngicas , Metarhizium , Animais , Esporos Fúngicos/genética , Virulência , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Insetos , Interações Hidrofóbicas e Hidrofílicas
9.
Fungal Biol ; 127(9): 1284-1290, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37821150

RESUMO

Peroxin 14 (Pex14) is a component of the receptor-docking complex at peroxisomal membrane. However, its post translation modification remains largely unknown in filamentous fungi. In this study, we characterized two phosphorylation sites (S54 and T262) in Beauveria bassiana Pex14 (BbPex14). Two phosphorylation sites are dispensable for the BbPex14 role as a peroxin. The BbPex14 roles in conidiation and blastospore formation are dependent on two phosphorylation sites, and blastospore formation is more dependent on phosphorylation modification of two sites. Two phosphorylation sites differentially contribute to pexophagy during conidiation and under stress, in which the site T262 is indispensable. Evidently, the phosphorylation modification expands the functionalities of BbPex14. This study improves our understandings of the complex regulatory mechanisms underlying organellar biology in the filamentous fungi.


Assuntos
Beauveria , Beauveria/genética , Beauveria/metabolismo , Fosforilação , Esporos Fúngicos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
10.
Front Immunol ; 14: 1264560, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37809075

RESUMO

Introduction: Enterotoxigenic bacteria commonly excrete heat-labile enterotoxins (LT) as virulence factors that consist of one subunit A (LTA) and five B subunits (LTB). In fungi, there are a large number of genes encoding the homologs of LTA, but their biological roles remain largely unknown. Methods: In this study, we identified 14 enterotoxin_A domain proteins in filamentous fungus B. bassiana in which five proteins were functionally characterized. Results: Five proteins displayed diverse sub-cellular localizations but perform convergent functions in stress response, development, and virulence. The loss of five LTA genes resulted in significant reduction in conidial production, blastospore formation, and the increased sensitivity to oxidative and cell wall -perturbing stresses. The virulence of five disruptants was notably weakened as indicated by topical and intrahemocoel injection assays. Notably, the loss of these five proteins led to the significant changes in the carbohydrate profiles of cellular surface, which induced the enhanced host immune reactions of encapsulation and melanization. Discussion: Thus, LTA proteins contribute to the fungus-host interaction via maintaining the carbohydrate profiles of cellular surface. This study expands our understanding of the enterotoxin_A domain proteins in fungal physiology and deepens mechanisms involved in the lifestyle of fungal insect pathogens.


Assuntos
Beauveria , Virulência/genética , Temperatura Alta , Carboidratos , Enterotoxinas
11.
Appl Environ Microbiol ; 89(9): e0099423, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37655890

RESUMO

The anti-ultraviolet (UV) role of a Rad4-Rad23-Rad33 complex in budding yeast relies on nucleotide excision repair (NER), which is mechanistically distinct from photorepair of DNA lesions generated under solar UV irradiation but remains poorly known in filamentous fungi. Here, two nucleus-specific Rad4 paralogs (Rad4A and Rad4B) and nucleocytoplasmic shuttling Rad23 ortholog are functionally characterized by multiple analyses of their null mutants in Metarhizium robertsii, an entomopathogenic fungus lacking Rad33. Rad4A was proven to interact with Rad23 and contribute significantly more to conidial UVB resistance (90%) than Rad23 (65%). Despite no other biological function, Rad4A exhibited a very high activity in photoreactivation of UVB-impaired/inactivated conidia by 5-h light exposure due to its interaction with Rad10, an anti-UV protein clarified previously to have acquired a similar photoreactivation activity through its interaction with a photolyase in M. robertsii. The NER activity of Rad4A or Rad23 was revealed by lower reactivation rates of moderately impaired conidia after 24-h dark incubation but hardly observable at the end of 12-h dark incubation, suggesting an infeasibility of its NER activity in the field where nighttime is too short. Aside from a remarkable contribution to conidial UVB resistance, Rad23 had pleiotropic effect in radial growth, aerial conidiation, antioxidant response, and cell wall integrity but no photoreactivation activity. However, Rad4B proved redundant in function. The high photoreactivation activity of Rad4A unveils its essentiality for M. robertsii's fitness to solar UV irradiation and is distinct from the yeast homolog's anti-UV role depending on NER. IMPORTANCE Resilience of solar ultraviolet (UV)-impaired cells is crucial for the application of fungal insecticides based on formulated conidia. Anti-UV roles of Rad4, Rad23, and Rad33 rely upon nucleotide excision repair (NER) of DNA lesions in budding yeast. Among two Rad4 paralogs and Rad23 ortholog characterized in Metarhizium robertsii lacking Rad33, Rad4A contributes to conidial UVB resistance more than Rad23, which interacts with Rad4A rather than functionally redundant Rad4B. Rad4A acquires a high activity in photoreactivation of conidia severely impaired or inactivated by UVB irradiation through its interaction with Rad10, another anti-UV protein previously proven to interact with a photorepair-required photolyase. The NER activity of either Rad4A or Rad23 is seemingly extant but unfeasible under field conditions. Rad23 has pleiotropic effect in the asexual cycle in vitro but no photoreactivation activity. Therefore, the strong anti-UV role of Rad4A depends on photoreactivation, unveiling a scenario distinct from the yeast homolog's NER-reliant anti-UV role.


Assuntos
Desoxirribodipirimidina Fotoliase , Metarhizium , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Desoxirribodipirimidina Fotoliase/genética , Desoxirribodipirimidina Fotoliase/metabolismo , Reparo do DNA , Proteínas de Saccharomyces cerevisiae/genética , Metarhizium/genética , Metarhizium/metabolismo , Raios Ultravioleta , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo
12.
J Adv Res ; 2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37339721

RESUMO

INTRODUCTION: In yeast, the cytoplasm-to-vacuole targeting (Cvt) pathway acts as a biosynthetic autophagy-related process, in which vacuolar targeting of hydrolase is mediated by the machineries involved in the selective autophagy. However, the mechanistic insights into vacuolar targeting of hydrolases through the selective autophagy pathway still remain enigmatic in filamentous fungi. OBJECTIVES: Our study aims to investigate the mechanisms involved in vacuolar targeting of hydrolases in filamentous fungi. METHODS: The filamentous entomopathogenic fungus Beauveria bassiana was used as a representative of filamentous fungi. We identified the homologs of yeast aminopeptidase I (Ape1) in B. bassiana by bioinformatic analyses and characterized their physiological roles by gene function analyses. Pathways for vacuolar targeting of hydrolases were investigated via molecular trafficking analyses. RESULTS: B. bassiana has two homologs of yeast aminopeptidase I (Ape1) which are designated as BbApe1A and BbApe1B. The two homologs of yeast Ape1 contribute to starvation tolerance, development, and virulence in B. bassiana. Significantly, BbNbr1 acts as a selective autophagy receptor to mediate the vacuolar targeting of the two Ape1 proteins, in which BbApe1B interacts with BbNbr1 also directly interacting with BbAtg8, and BbApe1A has an additional requirement of the scaffold protein BbAtg11 that interacts with BbNbr1 and BbAtg8. Protein processing occurs at both terminuses of BbApe1A and only at carboxyl terminus of BbApe1B, which is also dependent on the autophagy-related proteins. Together, the functions and translocation processes of the two Ape1 proteins are associated with autophagy in fungal lifecycle. CONCLUSION: This study reveals the functions and translocation processes for vacuolar hydrolases in the insect-pathogenic fungi and improves our understandings of the Nbr1-mediated vacuolar targeting pathway in the filamentous fungi.

13.
J Fungi (Basel) ; 9(5)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37233254

RESUMO

Autophagy is a conserved mechanism for the turnover of intracellular components. Among the 'core' autophagy-related genes (ATGs), the cysteine protease Atg4 plays an important role in the activation of Atg8 by exposing the glycine residue at its extreme carboxyl terminus. In the insect fungal pathogen Beauveria bassiana, a yeast ortholog of Atg4 was identified and functionally analyzed. Ablation of the BbATG4 gene blocks the autophagic process during fungal growth under aerial and submerged conditions. Gene loss did not affect fungal radial growth on various nutrients, but ΔBbatg4 exhibited an impaired ability to accumulate biomass. The mutant displayed increased sensitivity to stress caused by menadione and hydrogen peroxide. ΔBbatg4 generated abnormal conidiophores with reduced production of conidia. Additionally, fungal dimorphism was significantly attenuated in gene disruption mutants. Disruption of BbATG4 resulted in significantly weakened virulence in topical and intrahemocoel injection assays. Our study indicates that BbAtg4 contributes to the lifecycle of B. bassiana via its autophagic roles.

14.
iScience ; 26(4): 106551, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37102147

RESUMO

In integrated pest management program (IPM), the compatibility of mycoinsecticides with bioactive fungicides [e.g., unsaturated fatty acids (UFAs)] has attracted more and more attention; however, the mechanisms underlying fungal resistance to UFAs remain largely unknown. In this study, Beauveria bassiana, an entomopathogenic fungus, was used to explore fungal responses to linoleic acid (LA). Genome-wide expression revealed the transcriptomic responses of fungal cells to LA in a stress-intensity-dependent manner. Enrichment analyses indicated that the up-regulated differentially expressed genes (DEGs) are associated with the metabolism of lipid and fatty acids. Notably, a lipid-droplet protein (BbLar1) maintains the intracellular homeostasis of fatty acids and is crucial to fungal tolerance to LA stress, which significantly contributes to fungal compatibility with UFAs. Additionally, BbLar1 links the lipid droplets to global expression profiles in B. bassiana under LA stress. Our investigations provide an initial framework for improving the efficacy of insect pathogenic fungi in practical application.

15.
Insects ; 14(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37103122

RESUMO

Thechemical control of rice planthoppers (RPH)is prohibited in annual rice-shrimp rotation paddy fields. Here, the fungal insecticides Beauveria bassiana ZJU435 and Metarizhium anisoplae CQ421 were tested for control of RPH populations dominated by Nilaparvata lugens in three field trials. During four-week field trials initiated from the harsh weather of high temperatures and strong sunlight, the rice crop at the stages from tillering to flowering was effectively protected by fungal sprays applied at 14-day intervals. The sprays of either fungal insecticide after 5:00 p.m. (solar UV avoidance) suppressed the RPH population better than those before 10 a.m. The ZJU435 and CQ421 sprays for UV avoidance versus UV exposure resulted in mean control efficacies of 60% and 56% versus 41% and 45% on day 7, 77% and 78% versus 63% and 67% on day 14, 84% and 82% versus 80% and 79% on day 21, and 84% and 81% versus 79% and 75 on day 28, respectively. These results indicate that fungal insecticides can control RPH in the rice-shrimp rotation fields and offer a novel insight into the significance of solar-UV-avoiding fungal application for improved pest control during sunny summers.

16.
J Fungi (Basel) ; 9(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36983459

RESUMO

The white collar proteins WC1 and WC2 interact with each other to form a white collar complex acting as a well-known transcription regulator required for the operation of the circadian clock in Neurospora, but their roles in insect-pathogenic fungal lifecycles remain poorly understood. Here, we report that WC1 and WC2 orthologs co-regulate the conidiation capacity and conidial resistance to solar ultraviolet-B (UVB) irradiation in Beauveria bassiana, after their high activities in the photorepair of UVB-induced DNA damages were elucidated previously in the insect mycopathogen, which features non-rhythmic conidiation and high conidiation capacity. The conidial yield, UVB resistance, and photoreactivation rate of UVB-impaired conidia were greatly reduced in the null mutants of wc1 and wc2 compared to their control strains. However, many other lifecycle-related phenotypes, except the antioxidant response, were rarely affected in the two mutants. Transcriptomic analysis revealed largely overlapping roles for WC1 and WC2 in regulating the fungal gene networks. Most of the differentially expressed genes identified from the null mutants of wc1 (1380) and wc2 (1001) were co-downregulated (536) or co-upregulated (256) at similar levels, including several co-downregulated genes required for aerial conidiation and DNA photorepair. These findings expand a molecular basis underlying the fungal adaptation to solar UV irradiation and offer a novel insight into the genome-wide co-regulatory roles of WC1 and WC2 in B. bassiana's asexual development and in vivo photoreactivation against solar UV damage.

17.
Microbiol Spectr ; : e0007023, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36916980

RESUMO

Conidial maturation, which is crucial for conidial quality, is controlled by the asexual development activator WetA and the downstream, velvety protein VosA in Aspergillus. Their orthologs have proved functional in conidial quality control of Beauveria bassiana, as seen in Aspergillus, but are functionally unexplored, in Metarhizium robertsii, another hypocrealean insect pathogen. Here, WetA and VosA prove essential and nonessential for M. robertsii's life cycle, respectively. Disruption of wetA increased hyphal sensitivity to oxidative stress and Congo red-induced cell wall stress, but had little impact on radial growth. The ΔwetA mutant was severely compromised in conidiation capacity and conidial quality, which was featured by slower germination, decreased UV resistance, reduced hydrophobicity, and deformed hydrophobin rodlet bundles that were assembled onto conidial coat. The mutant's virulence was greatly attenuated via normal infection due to a blockage of infection-required cellular processes. All examined phenotypes were unaffected for the ΔvosA mutant. Intriguingly, mannitol was much less accumulated in the 7- and 15-day-old cultures of ΔwetA and ΔvosA than of control strains, while accumulated trehalose was not detectable at all, revealing little a link of intracellular polyol accumulation to conidial maturation. Transcriptomic analysis revealed differential regulation of 160 genes (up/down ratio: 72:88) in ΔwetA. These genes were mostly involved in cellular component, biological process, and molecular function but rarely associated with asexual development. Conclusively, WetA plays a relatively conserved role in M. robertsii's spore surface structure, and also a differentiated role in some other cellular processes associated with conidial maturation. VosA is functionally redundant in M. robertsii unlike its ortholog in B. bassiana. IMPORTANCE WetA and VosA regulate conidiation and conidial maturation required for the life cycle of Beauveria bassiana, like they do in Aspergillus, but remain functionally unexplored in Metarhizium robertsii, another hypocrealean pathogen considered to have evolved insect pathogenicity ~130 million years later than B. bassiana. This study reveals a similar role of WetA ortholog in asexual development, conidial maturation, and insect pathogenicity, and also its distinctive role in mediating some other conidial maturation-related cellular events, but has functional redundancy of VosA in M. robertsii. The maturation process vital for conidial quality proves dependent on a role of WetA in spore wall assembly but is independent of its role in intracellular polyol accumulation. Transcriptomic analysis reveals a link of WetA to 160 genes involved in cellular component, biological process, and molecular function. Our study unveils that M. robertsii WetA or VosA is functionally differential or different from those learned in B. bassiana and other ascomycetes.

18.
J Fungi (Basel) ; 9(2)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36836269

RESUMO

The Rad4-Rad23-Rad33 complex plays an essential anti-ultraviolet (UV) role depending on nucleotide excision repair (NER) in budding yeast but has been rarely studied in filamentous fungi, which possess two Rad4 paralogs (Rad4A/B) and orthologous Rad23 and rely on the photorepair of UV-induced DNA lesions, a distinct mechanism behind the photoreactivation of UV-impaired cells. Previously, nucleocytoplasmic shuttling Rad23 proved to be highly efficient in the photoreactivation of conidia inactivated by UVB, a major component of solar UV, due to its interaction with Phr2 in Beauveria bassiana, a wide-spectrum insect mycopathogen lacking Rad33. Here, either Rad4A or Rad4B was proven to localize exclusively in the nucleus and interact with Rad23, which was previously shown to interact with the white collar protein WC2 as a regulator of two photorepair-required photolyases (Phr1 and Phr2) in B. bassiana. The Δrad4A mutant lost ~80% of conidial UVB resistance and ~50% of activity in the photoreactivation of UVB-inactivated conidia by 5 h light exposure. Intriguingly, the reactivation rates of UVB-impaired conidia were observable only in the presence of rad4A after dark incubation exceeding 24 h, implicating extant, but infeasible, NER activity for Rad4A in the field where night (dark) time is too short. Aside from its strong anti-UVB role, Rad4A played no other role in B. bassiana's lifecycle while Rad4B proved to be functionally redundant. Our findings uncover that the anti-UVB role of Rad4A depends on the photoreactivation activity ascribed to its interaction with Rad23 linked to WC2 and Phr2 and expands a molecular basis underlying filamentous fungal adaptation to solar UV irradiation on the Earth's surface.

19.
J Fungi (Basel) ; 9(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36836376

RESUMO

In yeast, Atg22 functions as a vacuolar efflux transporter to release the nutrients from the vacuole to the cytosol after the degradation of autophagic bodies. There are more than one Atg22 domain-containing proteins in filamentous fungi, but their physiological roles are largely unknown. In this study, four Atg22-like proteins (BbAtg22A through D) were functionally characterized in the filamentous entomopathogenic fungus Beauveria bassiana. These Atg22-like proteins exhibit different sub-cellular distributions. BbAtg22A localizes in lipid droplets. BbAtg22B and BbAtg22C are completely distributed in the vacuole, and BbAtg22D has an additional association with the cytomembrane. The ablation of Atg22-like proteins did not block autophagy. Four Atg22-like proteins systematically contribute to the fungal response to starvation and virulence in B. bassiana. With the exception of ∆Bbatg22C, the other three proteins contribute to dimorphic transmission. Additionally, BbAtg22A and BbAtg22D are required for cytomembrane integrity. Meanwhile, four Atg22-like proteins contribute to conidiation. Therefore, Atg22-like proteins link distinct sub-cellular structures for the development and virulence in B. bassiana. Our findings provide a novel insight into the non-autophagic roles of autophagy-related genes in filamentous fungi.

20.
mBio ; 14(2): e0304922, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36809079

RESUMO

Many filamentous fungi develop a conidiation process as an essential mechanism for their dispersal and survival in natural ecosystems. However, the mechanisms underlying conidial persistence in environments are still not fully understood. Here, we report that autophagy is crucial for conidial lifespans (i.e., viability) and vitality (e.g., stress responses and virulence) in the filamentous mycopathogen Beauveria bassiana. Specifically, Atg11-mediated selective autophagy played an important, but not dominant, role in the total autophagic flux. Furthermore, the aspartyl aminopeptidase Ape4 was found to be involved in conidial vitality during dormancy. Notably, the vacuolar translocation of Ape4 was dependent on its physical interaction with autophagy-related protein 8 (Atg8) and associated with the autophagic role of Atg8, as determined through a truncation assay of a critical carboxyl-tripeptide. These observations revealed that autophagy acted as a subcellular mechanism for conidial recovery during dormancy in environments. In addition, a novel Atg8-dependent targeting route for vacuolar hydrolase was identified, which is essential for conidial exit from a long-term dormancy. These new insights improved our understanding of the roles of autophagy in the physiological ecology of filamentous fungi as well as the molecular mechanisms involved in selective autophagy. IMPORTANCE Conidial environmental persistence is essential for fungal dispersal in ecosystems while also serving as a determinant for the biocontrol efficacy of entomopathogenic fungi during integrated pest management. This study identified autophagy as a mechanism to safeguard conidial lifespans and vitality postmaturation. In this mechanism, the aspartyl aminopeptidase Ape4 translocates into vacuoles via its physical interaction with autophagy-related protein 8 (Atg8) and is involved in conidial vitality during survival. The study revealed that autophagy acted as a subcellular mechanism for maintaining conidial persistence during dormancy, while also documenting an Atg8-dependent targeting route for vacuolar hydrolase during conidial recovery from dormancy. Thus, these observations provided new insight into the roles of autophagy in the physiological ecology of filamentous fungi and documented novel molecular mechanisms involved in selective autophagy.


Assuntos
Beauveria , Esporos Fúngicos/metabolismo , Beauveria/genética , Beauveria/metabolismo , Ecossistema , Glutamil Aminopeptidase/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...